Installing CLI on LINUX
1. install PIP
curl -O https://bootstrap.pypa.io/get-pip.pypython get-pip.py --user
2. install AWS CLI
pip install awscli --upgrade --user
3. configure
aws configure
For “aws configure” you will need
AWS Access Key ID:
AWS Secret Access Key:
Which you can get by going to the AWS console, going to IMS and creating access key.
Running example
Once “aws” is configured you can run the CLI like
aws \
pi get-resource-metrics \
--region us-east-1 \
--service-type RDS \
--identifier db-xxxxxx \
--metric-queries "{\"Metric\": \"db.load.avg\"}" \
--start-time `expr \`date +%s\` - 60480000 ` \
--end-time `date +%s` \
--period-in-seconds 86400
That “—identifier” is for one of my databases, so you will have to change that. You will also have to modify region if you are accessing a database in a different region
getting json output
export AWS_DEFAULT_OUTPUT="json"
documentation
API
CLI
get-resource-metrics
https://docs.aws.amazon.com/cli/latest/reference/pi/get-resource-metrics.html
describe-dimension-keys
https://docs.aws.amazon.com/cli/latest/reference/pi/describe-dimension-keys.html
examples
My databases
db-YTDU5J5V66X7CXSCVDFD2V3SZM ( Aurora PostgreSQL)
db-2XQCJDBHGIXKDYUVVOIUIJ34LU ( Aurora MySQL)
db-Z2PNRYPV4J7LJLGDOKMISTWRQU (RDS MySQL)
see these blogs for loads on these databases
Blog Aurora Postgres https://aws.amazon.com/blogs/database/analyzing-amazon-rds-database-workload-with-performance-insights
Blog Aurora MySQL https://aws.amazon.com/blogs/database/analyze-amazon-aurora-mysql-workloads-with-performance-insights/
Blog RDS MySQL https://aws.amazon.com/blogs/database/tuning-amazon-rds-for-mysql-with-performance-insights/
CPU load last 5 minutes
aws \
pi get-resource-metrics \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--metric-queries '{
"Metric": "db.load.avg",
"Filter":{"db.wait_event.type": "CPU"}
} ' \
--end-time `date +%s` \
--period-in-seconds 300
Top SQL by load
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.sql"}'
Top Waits by load
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.wait_event"}'
. Top User by load
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.user"}'
.
"Total": 0.15100671140939598,
"Dimensions": {
"db.sql.db_id": "pi-4101593903",
"db.sql.id": "209554B4D97DBF72871AE0854DAD97385D553BAA",
"db.sql.tokenized_id": "1F61DDE1D315BB8F4BF198DB219D4180BC1CFE05",
"db.sql.statement": "WITH cte AS (\n SELECT id \n FROM authors \n LIMIT 1 \n )\nUPDATE authors s\nSET email = 'toto' \nFROM cte\nWHERE s.id = cte.id\n\n"
}
Top SQL by waits grouped
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.sql"}' \
--partition-by '{"Group": "db.wait_event"}'
.
{
"Total": 0.1644295302013423,
"Dimensions": {
"db.sql.db_id": "pi-4101593903",
"db.sql.id": "209554B4D97DBF72871AE0854DAD97385D553BAA",
"db.sql.tokenized_id": "1F61DDE1D315BB8F4BF198DB219D4180BC1CFE05",
"db.sql.statement": "WITH cte AS (\n SELECT id \n FROM authors \n LIMIT 1 \n )\nUPDATE authors s\nSET email = 'toto' \nFROM cte\nWHERE s.id = cte.id\n\n"
},
"Partitions": [
0.003355704697986577,
0.14093959731543623,
0.020134228187919462
]
},
"PartitionKeys": [
{
"Dimensions": {
"db.wait_event.type": "CPU",
"db.wait_event.name": "CPU"
}
},
{
"Dimensions": {
"db.wait_event.type": "IO",
"db.wait_event.name": "IO:XactSync"
}
},
{
"Dimensions": {
"db.wait_event.type": "Lock",
"db.wait_event.name": "Lock:transactionid"
}
}
Top SQL over last 5 minutes based on CPU
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.sql"}' \
--filter '{"db.wait_event.type": "CPU"}'
{
"Total": 0.003355704697986577,
"Dimensions": {
"db.sql.db_id": "pi-4101593903",
"db.sql.id": "209554B4D97DBF72871AE0854DAD97385D553BAA",
"db.sql.tokenized_id": "1F61DDE1D315BB8F4BF198DB219D4180BC1CFE05",
"db.sql.statement": "WITH cte AS (\n SELECT id \n FROM authors \n LIMIT 1 \n )\nUPDATE authors s\nSET email = 'toto' \nFROM cte\nWHERE s.id = cte.id\n\n"
}
load over last 5 minutes based on CPU
aws \
pi get-resource-metrics \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--metric-queries '{
"Metric": "db.load.avg",
"Filter":{"db.wait_event.type": "CPU"}
} ' \
--end-time `date +%s` \
--period-in-seconds 300
…
Top SQL over last 5 minutes based on CPU
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.sql"}' \
--filter '{"db.wait_event.type": "CPU"}'
alternatively with a partition by waits
aws pi describe-dimension-keys \
--region us-east-1 \
--service-type RDS \
--identifier db-YTDU5J5V66X7CXSCVDFD2V3SZM \
--start-time `expr \`date +%s\` - 300 ` \
--end-time `date +%s` \
--metric db.load.avg \
--group-by '{"Group":"db.sql"}' \
--partition-by '{"Group": "db.wait_event"}' \
--filter '{"db.wait_event.type": "CPU"}'
CLI with counter metrics
aws \
pi get-resource-metrics \
--region us-east-1 \
--service-type RDS \
--identifier db-VMM7GRZMTGWZNPWAJOLWTHQDDE \
--metric-queries "{\"Metric\": \"db.Transactions.xact_commit.avg\"}" \
--start-time `expr \`date +%s\` - 3600 ` \
--end-time `date +%s` \
--period-in-seconds 60 \
--endpoint-url https://api.integ.pi.a2z.com
コメント