I wanted to plot a set of data by 3 dimensions.
I wanted to plot I/O read latency by MB/s throughput by number of concurrent readers. Seemed simple. Well it turns out there is no good way to do it in Excel. Sure Excel has 3d charts but, attention, the z axis is treated like rows and not values. For example
Note that the z axis, “users” had 3 values marked on the axis. Those 3 values are 1,16 and 64. Notice that 16 is as far from 1 as 64 is from 16, ie the distance is not proportional to the value.
There is a free plug-in for Excel called Excel3Dscatterplot, but the data is hard to read, for example
Luckily R saves the day. With R there are a number of easy ways to graph 3d data.
Let’s take a data set that represents network I/O showing the send size in KB (s_KB), number of concurrent sender threads (thrds), the MB send throughput (s_MB/s) and then avg, min and max latency (mn_ms, avg_ms, max_ms).
s_KB ,thrds ,mn_ms ,avg_ms , max_ms , s_MB/s , 1 , .02 , .05 , 3.06 , .010 , 8 , .04 , .12 , 5.27 , .024 , 64 , .20 , .82 , 12.03 , .025 8 , 1 , .03 , .06 , 8.47 , 70.529 8 , 8 , .04 , .17 , 21.64 ,150.389 8 , 64 , .23 , 1.31 , 20.50 , 48.604 32 , 1 , .06 , .10 , 1.82 ,149.405 32 , 8 , .07 , .32 , 16.78 ,321.392 32 , 64 , .18 , 5.32 , 380.02 , 73.652 128 , 1 , .03 , .28 , 2.01 ,226.457 128 , 8 , .01 , .80 , 54.78 ,557.196 128 , 64 , .06 , 11.77 , 77.96 ,180.176 1024 , 1 , .01 , 1.49 , 5.76 ,335.587 1024 , 8 , .01 , 5.35 , 118.48 ,726.876 1024 , 64 , .02 , 40.50 , 221.59 ,714.162
to plot this in R, first start R up (see http://scs.math.yorku.ca/index.php/R:_Getting_started_with_R#Installing_R )
find out where R’s working directory is
getwd()
go to a directory with my data and r files
setwd("C:/Users/Kyle/Documents/GitHub/nio")
list files
dir()
load and plot nio <- read.csv("perfibmd1_loopback_short.csv")
nio s_KB thrds mn_ms avg_ms max_ms s_MB.s 1 NA 1 0.02 0.05 3.06 0.010 2 NA 8 0.04 0.12 5.27 0.024 3 NA 64 0.20 0.82 12.03 0.025 4 8 1 0.03 0.06 8.47 70.529 5 8 8 0.04 0.17 21.64 150.389 6 8 64 0.23 1.31 20.50 48.604 7 32 1 0.06 0.10 1.82 149.405 8 32 8 0.07 0.32 16.78 321.392 9 32 64 0.18 5.32 380.02 73.652 10 128 1 0.03 0.28 2.01 226.457 11 128 8 0.01 0.80 54.78 557.196 12 128 64 0.06 11.77 77.96 180.176 13 1024 1 0.01 1.49 5.76 335.587 14 1024 8 0.01 5.35 118.48 726.876 15 1024 64 0.02 40.50 221.59 714.162
library(scatterplot3d)
MBs=nio[,'s_MB.s']
threads=nio[,'thrds']
IOsize=nio[,'s_KB']
s3d <-scatterplot3d(IOsize,threads,MBs)
That’s a bit simple, but we can add some easy improvements. Here the dots are made solid, with color highlighting and a drop line to the bottom plane
s3d <-scatterplot3d(IOsize,threads,MBs,pch=16, highlight.3d=TRUE, type="h", main="3D Scatterplot")
In this test I’m running five different IO sizes 1 byte, 8k, 32k, 128k and 1024k. It would be nice to draw a line for each I/O size by increasing number of threads. There is no way to use 3 coordinates to identify a point, but there is a conversion routine that converts 3 coordinate point to two
s$xyz.convert(x,y,z)
There are 5 sets of points, i.e. one set per I/O size. Each set had 3 points, i.e. one point for each different number of concurrent threads 1,8,64.
The code loops through the 5 sets and draw a line through the 3 points:
x=nio[,'IOsize'] y=nio[,'threads'] z=nio[,'s_MB.s'] s <- scatterplot3d(x,y,z,xlab="IOsize", ylab="threads", zlab="MBs") for ( i in 1:5 ) { j=i*3 p1 <- s$xyz.convert(x[j-2],y[j-2],z[j-2]) p2 <- s$xyz.convert(x[j-1],y[j-1],z[j-1]) p3 <- s$xyz.convert(x[j],y[j],z[j]) segments(p1$x,p1$y,p2$x,p2$y,lwd=2,col=i) segments(p2$x,p2$y,p3$x,p3$y,lwd=2,col=i) }
It’s also easy to rotate the data. Here are two larger datasets
example
m=matrix(c(
0 , 1 , 0.02 , 0.06 , 4.72 , 0 , 0.008 , 0.000 ,99.19 , 0.67 , 0.05 , 0.09 , 0.00 , 0.00 , 0.00 , 0.00 , 0.06 , 0.08 , 1 ,
0 , 2 , 0.03 , 0.05 , 2.35 , 0 , 0.020 , 0.000 ,99.49 , 0.39 , 0.07 , 0.05 , 0.00 , 0.00 , 0.00 , 0.00 , 0.04 , 0.07 , 0 ,
0 , 4 , 0.03 , 0.07 , 14.27 , 0 , 0.026 , 0.000 ,98.33 , 1.18 , 0.15 , 0.24 , 0.06 , 0.04 , 0.00 , 0.00 , 0.05 , 0.07 , 0 ,
0 , 8 , 0.03 , 0.13 , 34.08 , 0 , 0.024 , 0.000 ,93.49 , 4.91 , 0.51 , 0.66 , 0.13 , 0.31 , 0.00 , 0.00 , 0.05 , 0.14 , 0 ,
0 , 16 , 0.04 , 0.26 , 31.27 , 0 , 0.025 , 0.000 ,56.29 ,42.31 , 0.16 , 0.57 , 0.31 , 0.30 , 0.06 , 0.00 , 0.11 , 0.16 , 0 ,
0 , 32 , 0.10 , 0.35 , 3.57 , 0 , 0.029 , 0.000 ,39.26 ,57.80 , 0.71 , 1.08 , 0.49 , 0.66 , 0.00 , 0.00 , 0.18 , 0.43 , 0 ,
0 , 64 , 0.16 , 0.70 , 39.93 , 0 , 0.032 , 0.000 , 1.28 ,91.69 , 3.18 , 1.64 , 1.25 , 0.37 , 0.59 , 0.00 , 0.33 , 0.70 , 0 ,
8 , 1 , 0.02 , 0.07 , 8.17 , 0 , 59.668 , 0.000 ,93.41 , 6.34 , 0.13 , 0.11 , 0.01 , 0.00 , 0.00 , 0.00 , 0.05 , 0.10 , 0 ,
8 , 2 , 0.03 , 0.07 , 9.75 , 0 ,111.486 , 0.000 ,98.18 , 1.35 , 0.24 , 0.18 , 0.04 , 0.00 , 0.00 , 0.00 , 0.06 , 0.08 , 0 ,
8 , 4 , 0.03 , 0.09 , 39.08 , 0 ,154.623 , 0.000 ,97.09 , 1.86 , 0.47 , 0.47 , 0.07 , 0.04 , 0.00 , 0.00 , 0.06 , 0.08 , 0 ,
8 , 8 , 0.05 , 0.15 , 18.48 , 0 ,171.580 , 0.000 ,78.14 ,19.78 , 0.74 , 1.05 , 0.11 , 0.19 , 0.00 , 0.00 , 0.09 , 0.29 , 0 ,
8 , 16 , 0.05 , 0.36 , 37.54 , 0 ,154.778 , 0.000 ,51.87 ,44.81 , 0.93 , 0.97 , 0.80 , 0.62 , 0.00 , 0.00 , 0.11 , 0.51 , 0 ,
8 , 32 , 0.06 , 0.62 , 43.06 , 0 ,152.741 , 0.000 ,15.84 ,66.88 ,13.27 , 1.64 , 0.64 , 1.42 , 0.31 , 0.00 , 0.11 , 0.55 , 0 ,
8 , 64 , 0.24 , 1.07 , 24.72 , 0 ,166.518 , 0.000 , 8.00 ,58.29 ,25.47 , 5.75 , 1.99 , 0.45 , 0.04 , 0.00 , 0.43 , 3.34 , 0 ,
32 , 1 , 0.05 , 0.11 , 8.46 , 0 ,145.238 , 0.000 ,40.63 ,58.08 , 1.14 , 0.15 , 0.01 , 0.00 , 0.00 , 0.00 , 0.10 , 0.13 , 0 ,
32 , 2 , 0.04 , 0.12 , 5.20 , 0 ,248.208 , 0.000 ,25.14 ,73.08 , 1.47 , 0.25 , 0.05 , 0.00 , 0.00 , 0.00 , 0.11 , 0.14 , 0 ,
32 , 4 , 0.06 , 0.19 , 22.94 , 0 ,297.655 , 0.000 ,11.05 ,85.37 , 2.40 , 0.97 , 0.15 , 0.06 , 0.00 , 0.00 , 0.12 , 0.22 , 0 ,
32 , 8 , 0.05 , 0.32 , 21.12 , 0 ,360.777 , 0.000 , 5.75 ,87.25 , 3.21 , 3.06 , 0.45 , 0.26 , 0.00 , 0.00 , 0.12 , 0.83 , 0 ,
32 , 16 , 0.09 , 0.62 , 22.54 , 0 ,362.603 , 0.000 , 3.22 ,81.87 , 6.48 , 6.21 , 1.15 , 1.06 , 0.00 , 0.00 , 0.25 , 1.88 , 0 ,
32 , 32 , 0.08 , 1.14 , 40.08 , 0 ,369.589 , 0.000 , 1.85 ,71.97 ,14.28 , 8.46 , 1.24 , 1.95 , 0.25 , 0.00 , 0.42 , 4.55 , 0 ,
32 , 64 , 0.38 , 2.23 , 33.70 , 0 ,319.048 , 0.000 , 0.00 ,36.12 ,39.33 ,18.56 , 2.61 , 3.31 , 0.07 , 0.00 , 0.68 , 4.97 , 5 ,
128 , 1 , 0.02 , 0.29 , 8.71 , 0 ,212.555 , 0.000 , 0.65 ,98.08 , 1.05 , 0.19 , 0.02 , 0.00 , 0.00 , 0.00 , 0.28 , 0.34 , 0 ,
128 , 2 , 0.01 , 0.33 , 8.54 , 0 ,376.113 , 0.000 , 6.95 ,87.98 , 4.28 , 0.76 , 0.02 , 0.00 , 0.00 , 0.00 , 0.28 , 0.64 , 0 ,
128 , 4 , 0.01 , 0.46 , 35.22 , 0 ,533.401 , 0.000 ,31.45 ,62.25 , 5.15 , 1.04 , 0.06 , 0.05 , 0.00 , 0.00 , 0.23 , 0.68 , 1 ,
128 , 8 , 0.01 , 0.83 , 89.39 , 0 ,545.988 , 0.000 ,23.75 ,59.64 ,10.87 , 4.96 , 0.25 , 0.51 , 0.02 , 0.00 , 0.28 , 0.97 , 0 ,
128 , 16 , 0.01 , 1.57 , 54.30 , 0 ,554.879 , 0.000 , 8.77 ,54.71 ,19.95 ,14.16 , 1.36 , 0.98 , 0.06 , 0.00 , 0.37 , 2.52 , 0 ,
128 , 32 , 0.04 , 3.21 , 86.26 , 0 ,549.206 , 0.000 , 2.61 ,41.04 ,26.36 ,23.33 , 3.27 , 3.00 , 0.38 , 0.00 , 0.49 , 5.87 , 0 ,
128 , 64 , 0.07 , 6.93 , 115.71 , 0 ,502.197 , 0.000 , 5.93 ,32.15 ,16.22 ,30.94 , 7.48 , 5.84 , 1.26 , 0.17 , 0.79 ,20.10 , 0 ,
1024 , 1 , 0.04 , 2.57 , 12.71 , 0 ,194.751 , 0.000 ,39.55 ,47.67 , 0.98 ,11.80 , 0.00 , 0.00 , 0.00 , 0.00 , 0.11 , 2.16 , 0 ,
1024 , 2 , 0.01 , 1.97 , 10.25 , 0 ,506.611 , 0.000 ,48.02 ,36.93 , 0.20 ,14.84 , 0.01 , 0.00 , 0.00 , 0.00 , 0.11 , 1.42 , 0 ,
1024 , 4 , 0.01 , 2.73 , 44.98 , 0 ,724.303 , 0.000 ,17.76 ,70.16 , 0.64 ,11.37 , 0.04 , 0.03 , 0.00 , 0.00 , 0.11 , 1.66 , 1 ,
1024 , 8 , 0.01 , 5.27 , 91.10 , 0 ,738.061 , 0.000 ,16.37 ,66.91 , 2.36 ,12.81 , 0.72 , 0.74 , 0.08 , 0.01 , 0.11 , 1.88 , 0 ,
1024 , 16 , 0.01 , 10.37 , 157.60 , 0 ,727.271 , 0.000 ,13.81 ,58.74 , 8.07 ,14.70 , 2.30 , 2.19 , 0.18 , 0.01 , 0.15 , 4.63 , 0 ,
1024 , 32 , 0.01 , 20.61 , 116.30 , 0 ,726.869 , 0.000 ,11.06 ,49.24 ,13.88 ,16.86 , 3.71 , 4.41 , 0.62 , 0.22 , 0.26 ,10.11 , 1 ,
1024 , 64 , 0.06 , 39.57 , 316.81 , 0 ,721.422 , 0.000 , 2.40 ,40.93 ,21.18 ,20.12 , 5.73 , 7.25 , 1.47 , 0.91 , 0.56 ,22.30 , 0
),
nrow=35,ncol=19,byrow=TRUE, dimnames=list(NULL,c(
's_KB','thrds','mn_ms','avg_ms','max_ms','r_KB','s_MB/s','r_MB/s',' <100u','<500u','<1ms','<5ms','<10ms','<50ms','<100m',' <1s',' p50',' p95','retrans'
)))MBs=m[,'s_MB/s']
threads=m[,'thrds']
IOsize=m[,'s_KB']x=IOsize
y=threads
z=MBslibrary(scatterplot3d)
s <- scatterplot3d(x,y,z,xlab="IOsize", ylab="threads", zlab="MBs")
nthreads=7
for ( i in 1:5 ) {
beg=(1+(i-1)*nthreads)
end=(beg+nthreads-2)
cat( beg," ",end,"\n")
for ( j in beg:end ) {
p1 <- s$xyz.convert(x[j],y[j],z[j])
p2 <- s$xyz.convert(x[j+1],y[j+1],z[j+1])
segments(p1$x,p1$y,p2$x,p2$y,lwd=2,col=i)
}
}
rotating the axis
z=IOsize x=threads y=MBs s <- scatterplot3d(x,y,z,pch=16,highlight.3d=TRUE,type="h",zlab="IOsize", xlab="threads", ylab="MBs") nthreads=7 for ( i in 1:5 ) { beg=(1+(i-1)*nthreads) end=(beg+nthreads-2) cat( beg," ",end,"\n") for ( j in beg:end ) { p1 <- s$xyz.convert(x[j],y[j],z[j]) p2 <- s$xyz.convert(x[j+1],y[j+1],z[j+1]) segments(p1$x,p1$y,p2$x,p2$y,lwd=2,col=i) } }
There is more to do. Wanted to hurry up and post and will add more later. Would be good to make the IOsize axis log scale because all the small sizes 1 byte, 8k, 32k and 128k are all bunched together. The library scatterplot3d has log axis scoped but not implemented. The call will take a log argument but not yet use it, thus in the mean time one can run log10 on the values and update the tick labels.
All that being said, I’m dubious of the use and utility of 3d charts in most situations. Sure graphing a 3d function where things are changing seamlessly in all directions can be insightful, but for simple data like the above, 2d is probably clearer
Comments